
What Is the Real Impact of SHA-256?
A Comparison of Checksum Algorithms

by alex duryee
digital & metadata preservation specialist
avpreserve

Revised: October 2014

AVPreserve | Media Archiving & Data Management Consultants
350 7th Avenue, Suite 1605 | New York, New York | 10001
917.475.9630 | www.avpreserve.com | info@avpreserve.com

One of the most critical aspects of digital preservation is ensuring the ability to ascertain whether
digital assets have been altered, regardless of if such alteration occurs through intention,
accident, or chance. Checking files for potential alteration is usually achieved by monitoring file
fixity, which is “the assurance that a digital file has remained unchanged” over time1. Typically,
verifying file fixity is accomplished by generating, recording, and monitoring the checksum of
a file, which provides a unique value based on the bit-level contents of the object. There are a
variety of algorithms that can be used for generating checksums, with two in particular—MD5
and SHA-256—being the most common2. The comparative benefits and drawbacks of both are
well-understood: while MD5 is weaker against random and deliberate collisions, it is faster to
generate than SHA-2563. However, there are no published empirical estimates for the difference
in time-to-generate between MD5 and SHA-256 in archival and repository environments, leading
to difficulty in making an informed decision as to which algorithm to implement for preservation
monitoring.

In August 2014, AVPreserve tested the difference in the time required to generate checksums
using MD5 and SHA256. For the test, we used a collection of 131,870 files (comprised of
pseudo-random data), totaling 123 gigabytes in size, located on a network attached storage
(NAS) device. This scenario was selected based on its similarity to most archival repositories,
where assets are stored on a dedicated server and accessed over a network. The client machine
(the computer generating the checksums) was a MacBook Air (model MacBookAir6,2) with an
Intel Core i7 processor, and the storage environment was a QNAP TS-669 Pro mounted via SMB.
All devices and cabling used on the local area network in which the tests were performed were
gigabit.

In testing, we used the UNIX time command to record the time elapsed while hashing the data:

$ time (perl hasher-[algorithm].pl) 2>>results-[algorithm].txt

This command was selected for its ability to separate real time from processor time. Real time
is the time elapsed in the real world while the process executes, which may be impacted by
data transfer rates or other factors; processor time, on the other hand, records how long the
processor was working during the process. Thus, the time required for data to move over the
network was recorded in real time, but not processor time; time spent actually generating
checksum values is recorded in both real and processor time. By separating the two values, we
isolated the amount of time spent generating checksum values within the complete process.

The Perl scripts we used to generate checksums can be downloaded at http://www.avpreserve.
com/wp-content/uploads/2014/10/checksum-scripts.zip. In testing, these scripts provided more
valuable results via the time command than programs such as hashdeep and md5sum. For
example, md5sum would report that more time was spent calculating checksums than elapsed
in real time. This is due to these programs using multiple processors, something the time
command does not strongly support and has trouble parsing. Using a single-threaded Perl script
allowed us to use the time command to accurately capture data about the checksum process.

Using Perl scripts, the test was performed 16 times for each algorithm, with series of tests

1 http://blogs.loc.gov/digitalpreservation/2014/04/protect-your-data-file-fixity-and-data-integrity/
2 The primary differences between MD5 and SHA-256 are the length of the hash value (32 characters and 64 characters,
respectively) and the complexity of the cryptographic function that generates them. For more information, please see http://
blogs.loc.gov/digitalpreservation/2011/11/hashing-out-digital-trust/
3 http://www.mathstat.dal.ca/~selinger/md5collision/ 1

What Is the Real Impact of SHA-256?

Introduction

Testing
Procedure

http://www.avpreserve.com/wp-content/uploads/2014/10/checksum-scripts.zip
http://www.avpreserve.com/wp-content/uploads/2014/10/checksum-scripts.zip
http://blogs.loc.gov/digitalpreservation/2014/04/protect-your-data-file-fixity-and-data-integrity/
http://blogs.loc.gov/digitalpreservation/2011/11/hashing-out-digital-trust/
http://blogs.loc.gov/digitalpreservation/2011/11/hashing-out-digital-trust/
http://www.mathstat.dal.ca/~selinger/md5collision/

occurring on different days and times. This was done in order to avoid network traffic at a given
time interfering with the results.

The results of AVPreserve’s tests are in Appendix A below. Three initial conclusions are:

•	 SHA-256 does require considerably more processor time—in our testing, there was an
additional 514.5 seconds for SHA-256 to complete hashing compared to MD5, or 4.18
additional seconds per gigabyte. In follow-up tests that we ran in different environments for
verification of our initial results, we found that although the total processing time differed
for each environment, the average 30% additional processor time required per gigabyte
remained consistent.

•	 There is a tremendous discrepancy between the amount of time spent by the processor
calculating checksums and the amount of time spent in total execution of the process,
roughly on the scale of 9 “idle” seconds to 1 processor second.

•	 The considerable difference in total runtimes for SHA-256 and MD5 (1,674 seconds on
average) is due to factors external to the algorithms.

Based on the first conclusion the table below illustrates how this difference scales to collections
of varying sizes. Note that these calculations assume that the checksum process is being
performed on a single processor thread; as additional threads are introduced, the durations
would reduce accordingly. Note that this only includes processor time and not real time.

Storage MD5 SHA-256

1 TB 3h 5m 4h 14m

25 TB 76h 56m 105h 58m

100 TB 307h 47m 423h 53m
Comparison of processor time needed to generate checksums for various storage sizes (based on test environment results)

The second conclusion suggests that the traditional comparisons of checksum algorithms,
which focus entirely on processor use, are insufficient for analysis of archival use cases. Using
the metric of processor time, the MD5 hashes of our corpus completed in 72% of the time that
SHA-256 required (average of 1,362.52 seconds versus 1,877.02 seconds). Taken by itself, this
could serve as a strong argument for the implementation of MD5 over SHA256. However, this is
not an accurate reflection of the actual time elapsed when computing hash values for assets in
a digital environment. During our testing, checksum generation represented only 9.8% to 12%
of time spent by the process, thus rendering any comparison of algorithms using total runtime
impossible. The other 88% to 91.2% was spent performing other tasks, and thus renders the
difference in algorithm time negligible.

This large amount of time was spent performing non-checksum related tasks necessary for
the process to complete. Most of it was spent transferring data over the network. Checksum
generation for on-disk assets requires that data be passed from the storage environment to the
processor, which computes the hash based on incoming data and stores it in RAM. As such,
during the checksum generation/validation process, every bit of every file that is analyzed must
be passed from storage to the machine generating the hashes. If the assets are stored on a

2

What Is the Real Impact of SHA-256?

Results &
Discussion

remote server, this data transfer serves as a bottleneck—because the processor generates
hashes faster than it can receive data from storage, it spends most of its time waiting to receive
data. In our tests, this waiting period represented 90% of the time spent by the checksum process;
in other words, very little of the checksum process involved actual checksum generation.

The third conclusion stems from an analysis of the total runtimes compared to processor time
used. The processor time used by each algorithm had very little variance—each value was within
3% of the mean—whereas the total runtime had up to 46% deviance from the mean. Given
the wide variance of total runtime compared to the highly consistent processor time, and the
considerable overlap between the total runtimes of the algorithms, there is strong evidence that
factors other than the algorithm determine the amount of time elapsed. The most likely factors
include available network bandwidth and server disk input/output speed at time of testing.

The chart below graphs the median real times (red line) and the quartiles (blue lines) for each
algorithm to scan the test data. Note that the medians are very close to each other, and that
there is considerable overlap between the times elapsed. This indicates that any difference in
performance between MD5 and SHA-256 was minor compared to the total time elapsed. In other
words, it is possible that the extra time necessary for SHA-256 to calculate may be lost in the
noise of network bandwidth, storage input/output, and other factors.

 Comparison of seconds elapsed of real time

For comparison, we also ran checksum tests against 100 gigabytes of data locally on the
MacBook Air used as the client machine. Since this machine uses a solid-state drive with very
high bandwidth, the effect of storage-to-processor time on the test was minimized. When testing
both MD5 and SHA-256 in this environment, we found that the processor time and real time were
within 15% of each other4. This confirms that most of the time “checking fixity” is actually spent
waiting for data to move from one system to another. As such, performing fixity checks as close
to the storage environment as possible can greatly reduce the time necessary to validate assets.

Note that the time to generate checksums will vary depending on environment, as demonstrated
in our network test and local tests. In our testing, we found that generating MD5 checksums
on remote storage required 11.08 seconds of processor time, and SHA-256 required 15.62
seconds. On local storage, MD5 required 8.9 seconds of processor time, and SHA-256 required
12.33 seconds. Despite the difference in real time required to generate checksums on different
environments (likely caused by factors such as network overhead), the proportional difference
between the algorithms remains approximately constant around 72%.

Taking the results of these tests and conclusions into consideration, AVPreserve recommends
the following when planning to implement file fixity generation and verification:

4 The average real time for MD5 was 1,049 seconds, and average processor time was 890 seconds; the average real time
for SHA-256 was 1,393 seconds, and the average processor time was 1,233 seconds. 3

What Is the Real Impact of SHA-256?

Conclusions

•	 Assess repository architecture for potential bottlenecks in the fixity workflow. If the
machine generating checksums has limited bandwidth to the storage environment, this will
have a dramatic effect on the time required to perform fixity tests.

•	 In cases where speed is an issue (for example, the sheer quantity of data would make
fixity verification tests run for very long periods), various optimizations should be
performed to allow for regular fixity checks. Discussions with IT specialists may be fruitful
in finding ways to maximize fixity throughput—for example, decreasing latency between
devices, or parallelizing checks to maximize processor throughput.

•	 Use empirical data to determine which checksum algorithm to implement in
repositories. Analyzing data and extrapolating results will help in determining which
algorithm is best suited for particular infrastructure and preservation needs.

The author would like to thank Kam Woods for detecting an error in the original data used for this
paper, and for sending along revisions to the data generation process.

Test Results (In Seconds)
SHA-256 MD5 Time Difference

Real Time CPU Time Real Time CPU Time Real Time CPU Time

12016.772 1938.277 11556.661 1361.648 460.111 576.629

12008.204 1927.289 11444.962 1350.49 563.242 576.799

14555.803 1938.349 14933.721 1370.436 -377.918 567.913

13743.785 1938.591 11446.803 1346.633 2296.982 591.958

13400.161 1862.212 11444.177 1349.705 1955.984 512.507

19485.504 1845.571 15428.809 1366.617 4056.695 478.954

14339.282 1832.346 11353.914 1339.73 2985.368 492.616

14433.376 1842.451 11211.001 1343.941 3222.375 498.51

18473.928 1848.278 11956.528 1358.08 6517.4 490.198

11689.236 1825.854 15212.994 1361.727 -3523.758 464.127

15876.057 1849.811 15602.471 1363.056 273.586 486.755

16724.46 1855.241 15886.136 1375.957 838.324 479.284

22772.095 1907.015 16897.595 1372.317 5874.5 534.698

15581.72 1866.037 16942.971 1403.573 -1361.251 462.464

17854.547 1883.278 14718.193 1366.574 3136.354 516.704

16531.463 1871.738 16662.786 1369.817 -131.323 501.921

Averages Times
15592.9 1877.0 13918.7 1362.5 1674.2 514.5

*Raw data is packaged with the Perl scripts available at http://www.avpreserve.com/wp-content/
uploads/2014/10/checksum-scripts.zip.

4

What Is the Real Impact of SHA-256?

AVPreserve is a full service media archiving and data management consulting firm. We partner with Archives, Museums, Government Agencies,
Corporations, Media & Entertainment, and other organizations that create or collect media to help them manage, access, and preserve their
valuable assets and data. Our services address the full lifecycle of collections, from assessment and preservation planning for analog materials,
through project management of digitization efforts, to the various aspects of digital preservation and file management, including DAM selection,
taxonomy development, policy and workflows, and development of software solutions supporting preservation and access.

Acknowledgements

Appendix A

http://www.avpreserve.com/wp-content/uploads/2014/10/checksum-scripts.zip
http://www.avpreserve.com/wp-content/uploads/2014/10/checksum-scripts.zip

